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This work demonstrates the application of a method to optimize
image”reconstruction algorithms on the basis of the performance
of specific visual tasks that are to be accomplished using the
reconstructed images. The evaluation of task performance is nu-
merically realized by a Monte Carlo simulation of the complete
imaging chain, including the final inference based on the recon-
st ructions. Fundamental to this evaluation is that it yields an
average response by consideration of many initial scenes. It i-
shown that the use of the nonnegativity constraint in the Alge-
braic Reconstruction Technique can significantly improve perfor-
mance in situations where there is a severe lack of measurements
when the relaxation factor is optimized. There is no indication
in any of the cases studied hitherto that the nonnegativity con-
straint can improve performance in situations where the data aro
complete, but noisy.

INTRODUCTION

The vallle of an hnage is ultimately related to how well it enables one
to perform a desired visual interpretation, ThirI dictum is evident in the
clinical setting, where imaging systems are to be judged on the basis of their
diagnostic capabilities, To meet the need for a valid evaluation of image
processing algorithms, I explored [Hanson, 1988a] a method to numerically
evali~ate image-recovery algorithms on the basis of how well the resulting re-
conutruc:. ions allow one to perform specified vium.1 tasks. The capabilities of
this approach wme demonstrated by studying the effect of the mmnegativity
constraint on the performance of the Algebraic Recomtructkn Technique
.. . .. . ..... . ... . .... . . . ... . .
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(ART) [GAon et al., 1970], an iterative tomographic reconstruction algo-
rithm, in a specific imagtig problem. In the first study [Hanson, 1988a] the
task was simple detection cf small discs and the perforrnmce index was the
detectability index d‘. The nonnegativity constraint was found to improve
detection for an insufficiency of data by about a factor of three. Optimiza-
tion of constrained .4RT by a proper choice of the relaxation factor resulted
in even better detectability [Hanson, 1988b], gaining about another factor of
ten. A number of other high-order visual t=ks are interesting. The value of
considering such high-order visual tasks is that they rely on the higher spatial
frequencies in the reconstruction, which are believed to dominate the perfor-
mance of other high-order tasks such as medical diagnosis [Hanson, 1983].
Optimization of A~T with respect to one of these, estimation of object lo-
cation, haa already been reported [Hanson, 1989].

In this work I extend the range of visual tasks to include mother high-
order task, the discrimination of binary pointlike objects horn a single object.
I also investigate the effect on object detection when the background is not
known a priori. This task is interesting because it is conjectured that the
human observer cannot incorporate the known background level into his
decision in an absolute way and so must estimate the background locally. In
this presentation I summarize the results of optimization of the constrained
ART algorithm with respect to the performmce of the above visual tasks
and compare them with standard measures of the fidelity of reconstructed
images.

METHOD

The overall method for evaluating a reconstruction algorithm used here
has been described before [Hmson, 1988a]. In this method one numerically
evaluates a task performance index for a specified imaging situation, This
technique consists of a Monte Carlo simulation of the entire imaging pro-
cess including random scene generation, data taking, reconstruction, and
performance of the specified task. The accuracy of the task performance
is determined by comparison of the rerults with the known original scene
using an appropriate figure of merit, Repetition of this process for many
randomly generated scenes provides a statistically significant estimate of the
performance index. When the ability to perform a task is marginal, tauk
performance is inherently a statistical question, This is clearly true when
data are significantly degraded by random noise, But, it al%ois often true
in measurement geometries in wh; ch the data are limited, The Artifacts
produced by the an: biguitiern arising from the lack of data depend m the
scene, An the scen~s vary in an uncontrollable mamwr, so do the mtifncts.
interpretation of the image can thus vary from one scene to the next in a
random fashion,

An advantage of the Monte (;arlo method is that the recor’struction Al-
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gorithm may be optimized for any fixed number of iterations. Alternatively,
the number of iterations may be varied to achieve the optimum performance
for algorithms that tend to diverge after many iterations. Such behavior is
observed [Veklerov and Llacer, 1987~ in the EM (Estimation Mtimizat ion)
algorithm and, when confronted by inconsistent data, some implementations
of ART [Gordon et al., 1970].

Mc .t of the tasks addressed in this paper are based on the estimation
of parameters associated with an assumed object. The parameter values
are estimated for a given set of data by using a minimum chi-squared (X2)
fitting procedure, which essentially finds the parameter set that best match
the data. This procedure is equivalent to maximum likelihood estimation
[Hanson, 1984] when the measurement noise is gaussian distributed and un-
correlated. For measurements of constant noise variance, tnis procedure
amounts to minimizing the mean square residuals, known simply as least-
squares estimation. The fitting algorithm I use is essentially identical to
the CHI.FIT program prezent ed by Bevingt on [Bevingt on, 1969] for fitting a
nonlinear function of the parameters. Nonlinear estimation is neccesary be-
cause the function describing an object is nonlinearly reiated to its position
and its width.

The Algebraic Reconstruction Technique (ART) [Gordon et al., 1970] is
an iterative algorithm that reconstructs a function from its projections. To
define the relaxation parameters to be discussed shortly, a brief description of
the algorithm follows, Assume that JV projections of the unknown fb.nction
~ are meaaured. Considering these measurements to be a vector, the ith
measurement is written as

9i = Hif) i = 1,..., N, (1)

where Hi is the corresponding row of the measurement matri.r, An initial
guess ia made; for example, ~ 0 = 0, In the ART algorithm the estimate is
updated by iterating on the individual mess’~ements one at a time:

[T]fh+l = fh+~hH~ ‘iH:fh ,
ii

(2)

where fk is the kth estimate of the image vector ~, i = k mod(lV)+l, and
Ak is a relaxation factor for the kth update. In constrained ART, a non-
negativity constraint is enforced by setting any component of ~ ‘+1 to zero
that has been made negative by the above updating procedure. The index
K indicateg the iteration number (K = int(k/N)), which, in the standard
nomenclature, corresponds to one pass through all N measurements. Ten
iterations were used to
factor is expressed an

obtain all the results reported here, The relaxation

AK = AO(rA)K-’. (3)
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The proper choice of the relaxation parameters A. and r~ is the crux of
optimization of the ART algorithm. The literature offers meager guidance
as to the choice oft he relaxat ioa fact or [Hanson, 1988b].

RESULTS

In previous publications I dealt with scenes composed of twenty ran-
domly placed nonoverlapping discs, ten with an amplitude of 1.0 and ten
with 0.1, superimposed on a background of zero. The discs were all 8 pixels
in diameter and the size of the reconstruction was 128 x 128, Each evaluw
tion of the reconstruction algorithm involved averaging the response to ten
difTerent, but similar scenes. In the first study [Hanson, 1988b] the focus
waz on the simple detection task in which it is assumed that the observer
knows the position and shape of the object as well as the background. The
decision variable was taken to be simply the average value of the reconstruc-
tion calculated over the area of the disc. The relaxation factor parameters
were opt imized with respect to the detectability index d ~ET, which is based
on the two hist ogramz of the decision variable for regions where the objects
are known to be present and separately for regions where tb.ere is no object.
The optimization of constrained ART resulted in a rn~jor increase in d ~~T
as well as much improved apparent image quality.

In another study [Hanson, 1989] I looked at a different type of task,
namely object localization. In that study, the position of the discs was esti-
mated using the minimum Xa fitting procedure. The reconstruction values
in circular regions surrounding each known disc were used as the input data.
The diameter of the circular fit regions was chosen to be 14 pixels. The
function used to fit tilese values was a disc with slightly tapered edges. The
amplitude and the position of the disc were allowed to vary in the fit while
the disc diameter and edge taper were fixed. ‘rhe background was assumed
t~ be zero. The rrna error in the position of the discs, ~A, was used as the
optunization function. It is seen in Fig. 1 that this function is very similar
to I/d ~ET for both the low-contrast and high-contrast discs. It is noted
however that the position uncertainty fur the high-contrast discs does not
deteriorate as quickly as one approaches the upper righthand corner as does
that for the low-contrast discs.

I have recently addressed the task of detection of the discs when the
background is unknown. This task is easily handled within the framework
of the minimum X2 procedwe by varying the amplitude of the disc and the
value of an assumed flat background in the fitting procedure. The optimum
choice for the diameter of the fit region is found to be 14 pixeh for the type
of scenes used, The resulting estimated amplitude of the disc is taken to be
the proper decision variable. It is seen in Fig. 1 that the detectability in-
dex derived from this analysis, d ~MPL, has a dependence on the relaxation
parameters similar to that of d~ET, but that it ir offset by a substantial
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.Figure 1: Contour plots of fcur optimization functions heed on tack per-
formance plotted ae ● function of the rekation parameters A. and r~ used
in 10 iteration of the constrained ART reconstruction algorithm. The rnea-
surernent data consist of 12 noiseless, parallel projections spanning 180°
and the source images conuist of 1.0high-contrast and 10 low-contrast discs,
all randomly placed. The functions are d ~~=, the detectability index for
the low-constraat discs; d ~lApL, the detectability index based on fitting the
amplitude of the low-contrast discs together with a flat background; and
CA, the rms uncertainty in the po:ition of the discs (shown for both low-
and high-contract discs). The coarse sampling (10 x 10 points) of these
functionrn, necessitated by the lengthy computation time required for each
function evaluation, accounts for the slight scalloping effects.



amount. The lack of a ptiori knowledge of the background decreases de-
tectability at the minimunI by about a factor of 2.6. One might expect a
worsening of the detectability in this case, but not by such a large amount.
On the basis of stationary uncorrelated noise, one expects about a 20% de-
crease in detectability caused by the necessity to estimate the background.
A large part of the observed degradation comes from the contribution to
d ~~PL that arises from sampling the background of the reconstruction. The
size of the suggested values of the r&xation factors is perhaps surprising
since values near unity are most often used. However, this is explained by
the observation that the nonnegativity constraint thwarts any negative up-
dates made in regions where the reconstruction is already zero. Thus more
emphasis must be given to the updates to make them effective in matching
the measurements.

Figure 2 shows contour plots for several standard measures of the quality
of reconstructions. Two of these functions xe measures of the vector-space
distance het ween the reconstruction and the original image; the rma error is
baaed on the L2 norm of the difference (the square root of the mean squared
value of the pixel differences) and the L1 error is based on the L1 norm (the
mean vtiue of the absolute diRerences). The rrna error gives more emphasis
to large deviations than the L1 error. The third function measures how
closely the projections of the reconstruction match the data. It is called
here the rms residual (the rms value of the difference between the data and
the projections of the reconstruction), which is not directly related to the
reconstruction per se.

.411 the optimization functions displayed in Figs. 1 and 2 indicate the
upper righthand corner of the A. - r~ space is undesirable. However, careful
inspection of the plots reveals that both the rrns error and L1 error permit
operation much closer to the corner than do any of the task performance in-
dices. It was shown that an operating point chosen to minimize therms error
resulted in more artifacts and considerably poorer detectability d ~ET than
opt imizat ion based on d ~ET itself [Hanson, 1988b]. The additional artifacts
were not very large, but they had a significant effect on the detectability of
the low-contrast discs. From the plots, it is observed that optimization with
respect to the L1 error would not degrade the detection of the low-contrast
discs very much. In fact, it has been suggested [Yeung and Herman, 1989]
on the basis of a study very similar to this one that the L1 error might be
better than the rrns error for judging the quality of reconstructions. How-
ever, such a conclusion cannot be drawn on the basis of a single test. There
are a number of reasons to be suspicious of the L1 error, as will be pointed
out below.

The point of using task performance as a basis for the evaluation of
reconstructed images is that it focuses on what is important to accomplish
t! . desired goal. Summary measures of image reconstruction quality, such as
- .1s error and L1 error, are not specific enough to be good indcators of how
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Figure 2: Contour plots of three functione often used to meuure the quality
of reconetructione. Theea fimctions were generated for the same reconstruc-
tion employed in Fig. 1. The rneuurement data consist of 12 noiselees,
paralhl projection spanning 180°. Although theee functions generally bve
clmraeteristice eidlar to thoee hued on tuk performance, they differ in
eenntid details.



well one can perform specific tasks. For example, in the present case dealing
with objects of different amplitudes, detection of the low-contrast discs is
very sensitive to slight artifacts in the background regions. On the other
hand, the rr~ error and L1 error can euily be overpowered by the rather
large errors associated with and surrounding the high-contrast objects. Since
these regions are not of interest for detection of the low-contrast discs, the
irrelevance of these measures to this task is obvious. In their favor, it may
be said that the rms error and L1 error are easily calculated. Also when
reconstructions are dominated by random noise and not by artifacts, in some
situations it is possible to relate the accuracy of parameter esti.matlcm to the
rrns error using the standard method to propagate errors.

I next consider the task Qf binary discrimination, which is a revised
version of the fhmous Raleigh criterion. The task is to determine whether
a detected pointlike object is a single star or a binary pair. Figure 3 shows
the fist test image in the sequence used to evaluate the performance of this
task. Each scene consists of eight binary objects and eight single objects.
The binary objects corwist of two 2D gaussian functions, each with a full-
width at half maximum (fwhm) of 4 pixels and an amplitude of 0.5. The
separation parameter, defined as the distance be. .{een the two gaussians
div;.ded by their fwhrn width in the direction of their sepixation, is 1.5. The
singlets are as} mmetric gaussians with a width of 10 pixels (fwhm) along
the principal axis and a {idth of 4 pixels (fwhm) “n the orthogonal direction.
Their amplitude is 0.42. These parameters pn wide the best match to the
doublets specified above as determined by fitting the doublets with a single
gaussiam The principal axes and the puitions of these objects are randomly
chosen, with the only restriction being that the objects not be too close to
each other. The task is to decide whether the objects are singlets or doublets
without regard for asymmetries in object shape. This criterion requires that
there be ample evidence of two peaks to call it a binary. The method used to
pertorm this task is based on the minimum X2 fit to circular regions, 20 pixels
in dkrneter, centered on the original objects. In the fit, the amplitude, the
position, the angle of the principal axis, the width along and pcrpendicuhr
to the principal axis, the value of the flat background and the separation
parameter are all varied. Since there may be multiple minima in this eight
dimensional space, especially in the direction of the tilt angle, each data set
is fitsixdifferent times with ~andomly chosen initial angles. In haif oft hese
trials, the sepmaticm parameter is set to zero and in the other half, to a value
of 1.5 to adequately sample both possibilities. The separation parameter is
used as the decision variable to calculate the binary discrimination index
d ~1~ in the same way as is done for the detectability index [Hanson, 1988a].

The reconstructions obtained with 10 iterations of unconstrained and
constrained ART for 12 paxallel, noiseless projections covering 180° are
shown in Fig. 3. The nonnegativity constraint br!ngs about a dramatic
reduction in the background clutter caused by the artifacts emanating from
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.
Figure 3: The first image (top) in the sequence of 10 trials used to test
binary discrimination. The reconstruction (bottom left) obtained with 10
iterations of the unconstrained ART reconstruction algorithm for relaxation
parameters Ao = 1.0 and r~ = 0.S0 and that obtained with constrained ART
for ~. = 3.17 and rA = 0,97 (bottom right) both for measurement data
consisting of 12 noiseless, parallel projections spanning 180°. Ln the latter
caae, the relaxation parameters represent those that yield the largest b!nary
discriminability, d ~1~ = 5.04. For the unconstrained reconstructions, d ~~N
= 0.89, which is relatively insensitive to the relaxation parameters.



O.(UL

r

L
Owi.

Figure 4: Contour plot of the optimization function baeed on binary diwri.rn-
ination. The measurement data consist of 12 noiseless, parallel projections
spanning180°. The irregular behavior is caused by the random march used
in the minimum X2 grocedure to iind the global minimluq as explained in
the test. .*

A

the objects themselves. It also cleans up the objecto therneelves, enhancing
their definition aa binary or single objects. The binary discrimination in-
dex sho~”s an improvement of more than ● factor of five. The nonnegativity
constraint leads to a decreaee in the rma error of fkom 0.040 to 0.014 and
likewise in the L1 emor of horn 0.023 to 0.005. The rma residual, however,
increaaes from 0.026 to 0.108. This increaae is not unreasonable ae the ART
algorithm, under certain circumstances, providea the leaet square residual
solution with minimum norm [Censor et al., 1983j. If this is the caee, the
addition of a side conatrairtt can only increaee the rrm residual.

Figure 4 shows the contour plot far the binary discrimination index.
Because the sceneo are chosen to have roughly the same fraction of its area
nouero aa in the CUMimages used in ih earlier studies, it is expected that
the optimization map for the binary discrimination problem will be drnilar.
Indeed this expectation is more or less fulfilled. The lack of smoothness in
this function is attributed to the random starting values of the parameters
used in the fitting procedure.

Figure 5 shows reconstructions obtained from plentiful but noisy data.
Gauesian-distributed rmdom numbers are added to the projections to oirn-
ulate the Meets of noise. The rma value of the D he is 4. For comparison,
the peak amplitude of the projections of one oft Le individual gauasiana is
about 1.8. At first, the constrained reconstruction appears to be much bet-
ter than the unconstrained one. However, closer examination reveals that
although the noise in the background region of the reconstruction is draati-
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Figure 5: The reconstruction (left) obtained with 10 iterations of the uncon-
strained ART reconstruction algoritlun and the unconstrained reconstruc-
tion (right) both for relaxation parameters ~. = 0.2 and r~ = 0.80 and for
measurement data consisting of 100 parallel projections spanning 180° with
additive gaussian noise (rmn value = 4). For the 10 unconstrained recon-
structions, d ~m = 2,59 and for the constrained reconstructions, d km =
2.56.

tally reduced by the nonnegativity constraint, there is little change in the
shape and amplitude of the objects. The Monte Car!o evaluation (besed
on ten scenes) finds the binary discriminability for the constrained recon-
structions is essentially identical to that for the unconstrained ones. This
conclusion mirrors what waa observed for the other visual tasks under the
same data-taking conditions. For example, detection of low-contraat discs
waa not improved despite the apparent decrease in the background noise.
The lack of improved performance is contrary to the observed decrease in
the rms error from 0.048 to 0.026, and the ever, larger relative decrease in the
LI error from 0.032 to 0.010 that attends the invocation of the nonnegativity
constraint. Thus, to use either of these aa a measure of reconstruction qual-
ity would be grossly misleading, The reason why task performance does not
follow the rma error in this case is undoubtedly related to the introduction
of the nonlinear constraint, which disrupts the properties of the noise. The
nonnegativity constraint has the effect of increasing the rms reoiduai slightly
from 1.77 to 1.91.

SUMMARY

I have shown that in imaging situations in width the dsta are incomplete,
the optimization of constrained ART readzcd through a judicious aeiection of
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the rehuation factor can significantly improve the performance of a variety
of visual tasks based on the reconstructions. The nonnegativity constraint
yields no improvement in task performance when the data are complete, but
noisy. For unconstrained ART, little improvement can be achieved through
optimization.

The optimization functions hazed on the performance of all the visual
tazks qtudied to date show similar trends as a fb.nction of the two relaxation
parameters ~. and r~. The optimum operating points in termz of these
parameters vary with the data-taking situation, but they are nearly the same
for both of these tailks. From the contour plots presented here, it is clear
that an optimization function that consisted of a weighted sum of all the
tasks presented here would have a broad valley, and the optimum operating
point obtained would not much tiect the performance of any indivual task.

T,,e use of either the - error or the Ll e~or u a basis for the eval.
uatio;i of reconstruction algorithms seems unwise. Optimization of these,
particularly the rma error, leads to reconstructions that are undesirable for
the purpose of performing some kinds of tasks. The nonnegativity constraint
decreases the magnitudeil of both of these errors. However, in situations in
which confusion in the reconstruction is caused by measurement noise and
not artifacts, the performmce of visual tasks is not improved. Hence, these
measures of image quality may be misleading.
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